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Abstract 

This research developed a comprehensive description of the simulation environment 

of Architect, a domain-oriented application composition system being developed at the 

Air Force Institute of Technology to explore new software engineering technologies. The 

description combines information from several previous research efforts and Architect's 

source code into a single, comprehensive document. A critical evaluation of the simulation 

environment was also performed, identifying improvements and modifications that enhance 

Architect's application execution capabilities by reducing complexity and execution time. 

The analysis was then taken one step further and presented extensions to the current 

simulation environment. The extensions included investigating the feasibility of mixed- 

mode execution and integrating the composition of application executives with the visual 

system interface. 

IX 



ANALYSIS AND EXTENSION OF 

MODEL-BASED SOFTWARE EXECUTIVES 

/.   Introduction 

1.1    Background 

The Software Engineering Institute (SEI) at Carnegie-Mellon University studied the 

idea of model-based software development in their Software Architectures Engineering 

(SAE) project. They developed the Object-Connection-Update (OCU) model which de- 

scribes a set of reusable software building blocks (16). These building blocks can be 

combined to form system models, thus reusing design knowledge from previous successful 

implementations of the building blocks. In addition, the behavior of the system can be 

derived from the known behavior of the lower-level building blocks. A detailed description 

of the OCU model is presented in Chapter II. 

Model-based software development encourages software engineers to view software 

development in the same way that traditional engineering disciplines view product develop- 

ment. Traditional engineering disciplines have long recognized and successfully employed 

reuse of design products. They benefit from large bodies of scientific knowledge, which over 

the years, have been codified into models (8). These models act as reusable templates from 

which to construct practical, working solutions to problems in a specific engineering area. 

For example, "automotive engineers have models of cars, civil engineers have models of 

bridges, mechanical engineers have models of rolling mills, electrical engineers have models 
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of motors ..." (8:140). The engineer is trained to understand these models, to recognize 

which model will solve a particular problem, and to adapt the model, if necessary, to fit a 

specific application. 

Software engineering is a relatively new discipline which is just now beginning to 

codify its body of knowledge. Unlike other engineering disciplines, it does not currently rely 

on models as a means of designing working solutions. Instead, each new problem is treated 

in isolation as a unique situation requiring a unique solution. D'Ippolito maintains that 

"models can do for the software industry what they have done before and continue to do 

for the main-line engineering professions" (7:258). That is, they can provide "reuse at the 

design level, reduced system complexity, a means to measure project risk, reduced coding 

costs, reduced testing costs, reduced documentation costs, and increased maintainability 

and enhanceability" (7:258). 

Another benefit of model-based software components is the ability to perform simu- 

lations on the models. The Knowledge-Based Software Engineering (KBSE) group at the 

Air Force Institute of Technology (AFIT) is researching this technology and is in its third 

year of funding by the Joint Modeling and Simulation System (J-MASS) program. The 

J-MASS program is intended to provide a flexible, standardized, and validated modeling 

tool to support a wide range of simulation requirements across the life cycle of a weapon 

system (3). J-MASS project members intend to apply a version of the OCU design method- 

ology to create and assemble simulation applications. The Air Force will eventually use 

these models for simulations in many critical application domains (33). 
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Within an application domain, there are instantiated models of low-level reusable 

components that can be put together to form a high-level system. Since the behavior of 

the low-level components is known, the overall behavior of the system is known and can 

be tested as it responds to various simulation scenarios. For example, in the cruise missile 

domain, a cruise missile may consist of a propulsion subsystem, an airframe subsystem, 

an avionics subsystem, and a warhead subsystem. The knowledge base for this domain 

would have several models (components) for each of the different subsystems. With such 

models, an engineer assigned the task of designing a new cruise missile to meet a given set 

of requirements could relatively easily compose cruise missiles with different subsystems, 

simulate them, and evaluate their performance against the given requirements. 

1.1.1 Architect. To investigate the feasibility of model-based software develop- 

ment, the KBSE group at AFIT is developing a prototype, domain-oriented, application 

composition system called Architect. The purpose of Architect is to allow an application 

specialist to input a system specification in a domain-specific language, verify the behavior 

of the specification, and transform the specification into a target language. An application 

specialist is a "sophisticated user" that is familiar with the overall domain and under- 

stands what the application must do to meet requirements (23). After verifying (through 

simulation) that the new composition behavior meets the specification, the ultimate goal 

is to use Architect to synthesize the appropriate implementation of the specification (i.e. 

transform the specification into a target language). 

The simulated executions used for verification are controlled by an application exec- 

utive. The application executive is a supervisory program similar to an operating system 
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kernel. As such, it oversees the operation of all software routines, manages all the resources 

of the application, and provides the interface between the software and the hardware (32). 

The application executive is a vital subsystem within Architect and was the primary focus 

of this research. 

1.1.2 Big Picture. Figure 1.1 shows the high-level design of the Architect system 

being constructed at AFIT. The application executive controls the execution of a composed 

application and is illustrated in the bottom left hand corner of the diagram. 

DOMAIN-ORIENTED APPLICATION 

COMPOSITION SYSTEM 
INFERENCE ENGINE 

WORKING 

TECHNOLOGY 

BASE 

- Control Algorithms and 
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Figure 1.1    Domain-Oriented Application Composition Environment 

1-4 



1.2    Problem 

Previous research (32) developed an application executive that supported three modes 

of execution: non-event-driven sequential, event-driven sequential, and time-driven sequen- 

tial. Prior to composing an application, the application composer had to select the exe- 

cution mode. Once the mode of execution was selected, all subsystems in the application 

were executed in this mode; there was no capability for independent subsystems within 

an application to execute in different modes. Furthermore, the previous implementation 

of Architect did not support composable application executives. The event-driven and 

time-driven executives were instantiated textually and saved to a file. Each time a new ap- 

plication was created, the corresponding executive was parsed into the application. There 

was no way to use the Architect Visual System Interface (AVSI) to compose the application 

executive. 

In addition, the information explaining the design and implementation of the ap- 

plication executive was contained in several different research efforts (9, 29, 32). This 

information was not available in a single document, making it very difficult to compre- 

hend. Also, there were some inconsistencies between the various sources which did little 

to aid understanding. 

1.2.1    Problem Statement. 

Consolidate the information detailing the implementation of the application ex- 
ecutive. Expand the existing implementation of Architect to allow independent 
subsystems to execute in different modes and provide composable application 

executives. 
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1.3 Scope 

This research focuses on analyzing the implementation of Architect's application ex- 

ecutive and identifying improvements and/or modifications that would enhance Architect's 

simulation capabilities. In addition, this research concentrates on the event-driven sequen- 

tial and time-driven sequential modes of execution. It does provide a brief discussion 

of the non-event-driven sequential mode but does not attempt to develop the concurrent 

execution modes conceptualized by Welgan (32). 

1.4 Research Objectives 

The following research objectives were established to satisfy the problem statement 

in Section 1.2.1. 

• To develop an indepth understanding of the current implementation of the application 

executive. 

• To consolidate the information detailing the implementation of the application exec- 

utive into a single, comprehensive document. 

• To perform a critical evaluation of the application executive, analyzing the overall 

operational concept and the domain model for the event-driven and time-driven 

sequential operating modes. 

• To analyze Architect to determine changes required for independent subsystems to 

execute in different modes. 

• To complete the integration of the application executive with the composition kernel 

and integrate the application executive with AVSI. 
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1.5    Sequence of Presentation 

The remainder of this thesis is organized as follows: Chapter II presents a more de- 

tailed background of the Architect system and the OCU model. It is important to provide 

this information in order for the reader to understand material developed in the remainder 

of this research. Chapter III contains a comprehensive description of the current imple- 

mentation of the application executive. Chapter IV provides an analysis of the existing 

application executive. It looks at the operational concept and the domain model of the 

executive and identifies improvements/enhancements that can be applied to the current 

implementation. Chapter V identifies extensions that can be made to the current imple- 

mentation of the application executive. In particular, it develops the changes required to 

support independent subsystems executing in different operating modes and integrating 

visually composable application executives. Finally, Chapter VI contains the conclusions 

of this research and recommendations for further research. 
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II.   Literature Review 

2.1 Introduction 

Chapter I introduced the concept of model-based software development as a method- 

ology that could provide software engineers with the ability to reuse design knowledge. 

Reuse at the design level reduces coding, testing, and documentation costs and increases 

maintainability and enhanceability. To investigate the feasibility of this approach, the Ar- 

chitect system, based on the Object-Connection-Update (OCU) model, was constructed. 

This chapter discusses several areas that relate to model-based software development and 

specifically to the Architect system. First, the OCU model is discussed, introducing the 

elements and functions of the model. Second, the Architect system itself is discussed, 

looking at domain-oriented application composition, its development environment, and its 

history. Third, an overview of the Very High Speed Integrated Circuit (VHSIC) Hardware 

Description Language (VHDL) is presented. VHDL is a standardized and well documented 

language, and it provides a simulation environment similar to Architect's. Finally, a brief 

introduction to simulation is presented, highlighting system simulation and differentiating 

event-driven from time-driven simulation. 

2.2 Object Connection Update (OCU) Model 

As stated in Section 1.1, the OCU model was developed by the SEI. However, there 

exists no detailed description of OCU; the best description available is contained in an SEI 

draft report by Lee (16). The following sections summarize the information found in this 

report. 
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2.2.1 OCU Description. The OCU model is the software architecture of Archi- 

tect. Lee states that a software architecture is "a selection, from a technology base, of 

models and composition rules that defines the structure, performance, and use of a system 

relative to a set of engineering goals" (16:8). In other words, an architecture is a way of 

composing models, using engineering practices to achieve an overall design. 

The OCU model is especially well-suited for developing software systems that can 

be described as of a set of subsystems. The subsystem is the main element in the OCU 

model. A software system, or application, is described as a set of subsystems controlled by 

an executive function called an application executive. Figure 2.1 shows how a subsystem 

is represented in the OCU model. 

EXPORT 

CONTROLLER 

Figure 2.1    An OCU Subsystem 
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An OCU subsystem consists of one or more objects, an import area, an export area, 

and a controller. The objects model behavior of real-world components and maintain state. 

The objects are either primitive objects or other lower-level subsystems, thus allowing for 

nested subsystems. Each primitive object has an input area, an output area, and an 

associated set of algorithms for inputing new data, transforming the current state, and 

producing output data. The import area is the central collection point for the inputs needed 

by the objects in the subsystem. It collects data from other subsystems in the application 

and makes them available to its objects. The export area is the central distribution point for 

the outputs of a subsystem needed by other subsystems in the application. The controller 

manages the objects in the subsystem. It establishes connections between the objects and 

handles the flow of information to and from them, based on the function or purpose of the 

system. 

In order to carry out its mission, each subsystem has a common set of functions. 

These functions are Update, Stabilize, Initialize, Configure, and Destroy (16). Update 

causes the controller to update the state of the subsystem based on the current state 

of the objects it controls and the input data in the import area; in addition, state data 

needed externally is written to the export area. Stabilize gets rid of transients; it causes 

the subsystem to reach a steady state consistent with its import data and current state. 

Initialize creates new objects and sets their initial states. Configure maps object inputs to 

the import area and object outputs to the export area (i.e., it defines how the subsystem is 

connected internally and externally). Destroy deallocates objects that were created during 

Initialize. 
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Similarly, there is a common set of functions for each object. These functions consist 

of Update, Create, SetFunction, SetState, and Destroy (16). Update causes the object to 

calculate a new state based on its current state and its inputs, Create instantiates a new 

instance of an object, SetFunction redefines or alters the algorithm used by the Update 

function, SetState changes an object's state directly, and Destroy deallocates objects. 

2.2.2    Application Executive.      An important aspect of the OCU model is anonymity. 

Subsystems know only about their objects and have no knowledge of other subsystems. 

Objects have no knowledge of other objects or of subsystems. Because of this, there needs 

to be some way to control the overall execution of the application. This is the role of the 

application executive. 

In (16), Lee mentions the application executive only briefly. Even though it is not 

covered in detail, it is possible to infer some information about the application executive 

from the rest of the paper's description of the OCU model. The executive is modeled 

as an OCU subsystem and manages all the resources of an application for the purpose 

of controlling execution. It is a high-level supervisory subsystem that coordinates the 

behavior and information flow between the other subsystems in the application. Each 

subsystem in the OCU architecture is passive and waits for the application executive to 

tell it to perform one of its operations (16:18). For example, when the executive triggers 

(e.g., calls) the Update function of the controller of a subsystem, the subsystem (via calls 

to Update functions of the objects it controls) reads the data in its import area, reacts 

based on the data and its current state, and places any data that may be needed by other 

subsystems in its export area.   The application executive must have knowledge of each 
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subsystem in the application, as it is also responsible for the mapping between import 

areas and export areas of separate subsystems and between the import/export areas and 

I/O devices. 

2.3   Architect 

2.3.1    Domain-Oriented Application Composition System. As stated in Sec- 

tion 1.1, Architect is a prototype domain-oriented application composition system. A 

domain-oriented application composition system has several distinguishing characteristics. 

It contains a knowledge base organized into domains and includes a process to compose 

applications. The knowledge base stores reusable components within an application do- 

main. The components encapsulate domain knowledge, and applications are composed 

using these components. In Architect, the domain knowledge for each application do- 

main is captured in its technology base. The knowledge base for the entire system is the 

aggregation of the individual, domain-specific, technology bases of all supported domains. 

Through the composition process, the application composer can create, modify, save, 

and maintain applications. Once the application is composed, the environment provides 

the user with the ability to simulate and verify the behavior of the application and syn- 

thesize executable code. Architect doesn't currently support code synthesis; this has been 

recommended as an area of future research for the project. Figure 2.2 shows a big picture 

of a generic domain-oriented application composition system. The rounded boxes repre- 

sent processes and the rectangular boxes represent physical structures. For a more detailed 

discussion of this type of system, see Warner (30). 
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System Requirements 

Executable 

Application 

Figure 2.2    Generic Domain-Oriented Application Composition System(30:3-3) 

2.3.2 Domain Analysis and Modeling. Section 2.3.1 introduced Architect's 

knowledge base as a collection of domain-specific technology bases. It is important to have 

a method, or process, to accurately and thoroughly capture the desired domain knowl- 

edge into the associated technology base. Domain analysis is the process that performs 

this function. Prieto-Diaz defines domain analysis as "... a process by which informa- 

tion used in developing software systems is identified, captured, and organized with the 

purpose of making it reusable when creating new systems" (21). Since the Architect 

system is the result of numerous research efforts, several different domain analysis tech- 

niques have been used to capture the domain knowledge encapsulated in its knowledge 

base   (2, 14, 18, 19, 21, 22, 28). 

2.3.3 Development Environment. Architect is based on the OCU architecture 

and is built within the Software Refinery environment. Software Refinery consists of the 

Refine™ (26) wide spectrum language, the Dialect (25) language processing tool, and 
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the Intervista (24) graphical tool. As a wide-spectrum language, Refine™ is capable of 

expressing an application at the specification level or the code level. At the specification 

level, it is necessary to only specify what transformations are needed to display the desired 

behavior. There are high-level abstractions such as set formers, rules, and transforms. 

Using these, the user can specify a set of post-conditions that must be made true whenever 

certain pre-conditions are true, without being concerned with how the post-conditions are 

met. At the code level, traditional programming constructs are available to allow the user 

to specify how to implement the desired behavior. 

2.3.4 Implementation. The original implementation of Architect was developed 

by Anderson (1) and Randour (23) in 1992 and had only a textual interface. This initial 

version had a single application domain, digital logic circuits, and a rudimentary simula- 

tion capability, limited to simulating applications that exhibit non-event-driven-sequential 

behavior. Weide (31) extended Architect to include a graphical interface called the Archi- 

tect Visual System Interface (AVSI). Subsequent research has been done by several KBSE 

members. Cossentine (6) developed an enhanced AVSI. Warner (30) created a method for 

populating the knowledge base with new domains and created a technology base for the 

digital signal processing domain. Welgan (32) extended the execution/simulation capabil- 

ity by incorporating an application executive that supported event-driven and time-driven 

applications. Gool (9) identified and implemented architectural changes necessary to sup- 

port event-driven and time-driven applications. Waggoner (29) created a new technology 

base for the event-driven logic circuits domain and developed a cruise missile technology 

base to support the time-driven mode of execution.   Finally, Cecil and Fullencamp (5) 
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implemented an object-oriented database to store the domain models in the knowledge 

base. In addition, there are two research efforts being conducted concurrently with this 

research: Guinto (11) is developing an enhanced AVSI, and Harris (12) is extending the 

database support. 

Figure 2.3 shows a general overview of Architect. From this figure, it is easy to see 

the similarity between Architect and the generic domain-oriented application composition 

system of Figure 2.2. The square boxes represent the actual components of Architect. The 
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Figure 2.3    General System Overview of Architect(30:4-2) 

rounded boxes represent tasks accomplished by the domain engineer, the software engineer, 

and/or application specialist. 
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The domain engineer analyzes the domain of interest to determine the domain knowl- 

edge that needs to be captured in the technology base. He works together with the software 

engineer to encapsulate this knowledge into models and populate the technology base. At 

the lowest level, these models are represented as primitive objects. At a higher level of 

abstraction, the models can be represented as subsystems composed of primitive objects 

and/or other subsystems. The application specialist uses these models along with the AVSI 

to view domain documentation and to compose, load, check the semantics of, execute, and 

save applications. Applications are composed of subsystems, and subsystems, once again, 

are composed of primitive objects and/or other, lower-level subsystems. 

2.3.5 Application Execution. Application execution is controlled by the applica- 

tion executive. Architect currently supports three modes of execution: non-event-driven 

sequential, event-driven sequential, and time-driven sequential. In the non-event-driven se- 

quential mode, each subsystem controller has an update algorithm which is a static list of 

function calls for its subordinate components. During execution, the controller performs 

these function calls sequentially, in the order specified. In the event-driven sequential 

mode, the application executes as the result of the executive servicing events that are 

asynchronously raised by the application and executive subsystems. Finally, in the time- 

driven sequential mode, the application executes as a result of the subsystems reacting to 

changes in the clock. This section provides a discussion of the non-event-driven sequential 

mode; Chapter III presents the other two modes of execution. 

It was mentioned in Section 2.3.4 that the original version of Architect provided only 

rudimentary simulation capability, supporting only non-event-driven-sequential application 
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execution. In this mode, there is no application executive; each subsystem controller 

contains an update algorithm that determines the order in which the subsystem's primitive 

objects are updated. The application specialist specifies the update algorithm during the 

composition process. As Architect has evolved, this original execution mode has continued 

to be supported. 

As an example, consider the simple application from the digital logic circuits domain 

shown in Figure 2.4. In this example, there are two switches (SW-1 and SW-2), an AND 

SW-1 

SW-2 

AND ■<5D 

Figure 2.4    An Application from the Logic Circuits Domain 

gate, an inverter (INV), and a light emitting diode (LED). Using AVSI, the application 

specialist creates a subsystem with these components. The corresponding AVSI represen- 

tation of the subsystem and the technology base from which it was created are shown in 

Figure 2.5. The update algorithm for this subsystem would be as follows: 

• Update SW-1 

• Update SW-2 

• Update AND 

• Update INV 

• Update LED 

Prior to an object's Update function being called, there is no data in its output area. 

Therefore, it is the responsibility of the application specialist to select a sequence that 
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ensures no object is updated until all other objects supplying its inputs have already- 

updated. In this example, the order in which the switches are updated could be reversed, 

and the the application would still demonstrate the correct behavior. 

SiS;:jföirn^Ä:iÄtjiiSct*fe:: 
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+-+ 
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o-    o 
AND-GATE-OBJ NOR-GATE-OBJ DECODEB-OBJ 

Figure 2.5    Architect Subsystem and Technology Base 

This example also demonstrates how the knowledge base can be populated with new 

reusable models. The circuit designed in this example exhibits the behavior of a NAND 

gate. Once this behavior has been verified and the application saved to the technology base, 

the application specialist can use it in future applications. This is a simple example, how- 

ever, creating increasingly complex models from lower level models allows the application 

specialist to reuse design knowledge from previous projects and to abstract out low-level 

details once the lower level models are instantiated. As an example, an application spe- 

cialist designing a central processing unit (CPU) could use the lowest level primitives from 

the digital logic domain to design a half-adder. Two half-adders could, in turn, be used in 
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the design a full-adder which could, in turn, be used in the design of the arithmetic logic 

unit (ALU) which could, finally, be used in the design of the CPU. 

2.4     Very High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL) 

VHDL is a standardized and well-documented language. Additionally, it provides a 

simulation environment similar to what the application executive is attempting to achieve 

within the framework of the Architect system. Therefore, VHDL provided an excellent 

case study to analyze and compare the existing implementation of the application exec- 

utive. This section provides a simplified description of VHDL. For a more detailed dis- 

cussion of the VHDL language and simulation environment, see IEEE Std 1076-1987 (13), 

Lipsett (17), and Perry (20). 

Interestingly, hardware engineers, as well as software engineers, have been searching 

for a tool to specify the behavior of their systems. In 1981, the DOD contracted for an 

industry standard, technology independent hardware description language which generates 

executable specifications. VHDL's goal is to describe systems at a number of different levels 

of abstraction and to simulate systems at any mixture of those levels (17, 20). Since the mid 

1980s, engineers have used VHDL to specify the behavior and structure of their designs, 

and they have used VHDL's event-driven simulator to validate them. 

In VHDL, operations are referred to as processes. Each process contains one or 

more statements that are executed sequentially. Each process defines a specific action or 

behavior to be performed when the value of one of the signals on its sensitivity channels 

changes. 
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A design entity is the basic VHDL unit of description. A design entity is used to 

represent individual components or functions which make-up a system. VHDL allows users 

to generate multiple copies of an entity by instantiating it one or more times in a system. 

A design entity has ports through which it communicates with the "world." A design 

entity consists of an entity declaration and an architecture body. The entity declaration 

defines the inputs and outputs of the entity so other components can interface with it. The 

architecture body describes the design entity in one of two ways: 

• structural description - a composition of existing design entities 

• behavioral description - a procedural description of the entity's transformation of 

inputs to outputs 

A design entity can be described and decomposed using a hierarchy of structural definitions, 

but ultimately, lowest level entities must have behavioral descriptions. 

Entities communicate via signals. Signals are like variables, except they are managed 

by signal drivers. A signal driver is like a queue; it holds the current value and all currently 

scheduled future values for the signal it is associated with. When a process generates a 

value on a data pathway, it may also designate the amount of time before the value is sent 

over the pathway. This is referred to as scheduling a transaction after the given time, and 

it is possible to schedule any number of transactions for each data pathway. The driver is a 

set of time/value pairs which hold the value of each transaction and the time at which the 

transaction should occur. The simulator updates signals during event driven simulation 

cycles. 
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VHDL has a two-stage model of time referred to as the simulation cycle. Figure 2.6 

depicts the VHDL simulation cycle. The simulation cycle is the abstraction under which 

Start Simulation 

Update Signals Execute Processes 

End Simulation 

Figure 2.6    VHDL Simulation Cycle(17:12) 

the hardware model described by the VHDL code is executed. This abstraction is based 

on a generalized model of the stimulus and response behavior of digital hardware (i.e. a 

functional component reacts to activity on its input connections and responds through its 

output connections). 

During the first stage of the simulation cycle, the simulator updates all signals accord- 

ing to the values scheduled for the current simulation time in the signal driver schedules. 

This stage is complete when all data pathways which are scheduled to obtain new values 

at the current simulation time are updated. During the second stage of the simulation 

cycle, the simulator executes all processes that are sensitive to the updated signals. The 

execution stage will most likely schedule additional events in the signal drivers. When 

there are no more events scheduled for the current time, the simulation clock is set to the 

next simulation time at which a transaction is to occur and the cycle is started again. 

During the execute process portion of the simulation cycle, processes are either active 

or suspended. A process is active when an event occurs on one of its sensitivity channels 
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during the current simulation cycle. A process is suspended when no events occur on its 

sensitivity channels during the current simulation cycle. 

From the above model of the simulation cycle, it is evident that there is always some 

delay between the time a process puts a value on a data pathway and the time at which 

the data pathway sees that value. For example, if no delay is specified in an assignment 

statement of a value to a signal, VHDL uses what are known as delta delays. Delta delays 

result in repeated simulation cycles without the advancement of the simulation clock. 

In VHDL, multiple processes can be active at the same simulation time. All processes 

that receive events on their sensitivity channels during the update signals part of the 

simulation cycle will be active during the execute processes part of the simulation cycle. 

This is one of the great advantages of VHDL - parallel event simulation. It also requires 

the designer to define the behavior the system at two levels: the sequential level and the 

concurrent level. The sequential level involves programming the behavior of each process 

which will be used in the model. The concurrent level involves defining the relationship 

between the processes, with particular attention to the communication between them (17). 

2.5    Simulation 

The application executive is the key OCU subsystem responsible for the simulation of 

an application in the Architect system and is the primary focus of this research. Therefore, 

it is the purpose of this section to provide a brief introduction and understanding of 

simulations, and in particular, to differentiate between time-driven simulation and event- 

driven simulation. 
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A simulation is the imitation of the operation of a real-world process or system. It 

involves the generation of an artificial history of a system, and the observation of that 

artificial history to draw inferences concerning the operating characteristics of the real 

system (4). The behavior of a system as it evolves over time is studied by developing a 

simulation model. This model usually takes the form of a set of assumptions concerning the 

operation of the system. Once developed and validated, a model can be used to investigate 

a wide variety of "what if" questions about the real-world system. Potential changes to 

the system can first be simulated in order to predict their impact on system performance. 

Simulation can also be used to study systems in the design stage, before such systems are 

built. Thus, simulation modeling can be used both as an analysis tool for predicting the 

effect of changes to existing systems, and as a design tool to predict the performance of 

new systems under varying sets of circumstances (4). 

2.5.1 System Simulation. Since Architect provides a simulation environment for 

a system, it is important to define system simulation. System simulation is defined by 

Khoshnevis as "the practice of building models to represent existing real-world systems or 

hypothetical future systems and of experimenting with these models to explain system be- 

havior, improve system performance, or design new systems with desirable performances" 

(15:2). Furthermore, a system can be classified as discrete or continuous according to the 

way the system changes state with respect to time. System state is determined by the 

value of all the state variables in the system. A discrete system is one in which all state 

variables have discrete values. The state of a discrete system changes in finite jumps or 

quanta according to the discrete values of its state variables. State transitions are caused 

2-16 



by stimuli called events. Events are associated with an instantaneous point in time and 

have no duration. A discrete system can be modeled as a finite state machine. A con- 

tinuous system has state variables that can take on a continuous range of values. The 

state of a continuous system is characterized by smooth, continuous changes. Continuous 

systems are often represented by sets of differential equations that specify the system's 

behavior (10). 

2.5.2 Event-Driven and Time-Driven Simulation. An important characteristic 

of simulations is the way in which the advancement of time is handled. In an event- 

driven simulation, events are raised asynchronously by components in the simulation. As 

the events are processed, the simulation clock is updated so that its time is the same as 

the time of the event currently being processed. The clock is, therefore, driven by the 

execution of the simulation model. In a time-driven (or time-stepping) simulation, the 

clock is advanced in uniform increments. At each increment, model components are given 

the opportunity to execute. The model components respond to changes in the clock but 

do not raise new events. After each component has been given the opportunity to execute, 

the clock is incremented, and the process is repeated (29). 

2.6    Summary 

The software architecture of Architect is based on the OCU model, and OCU is par- 

ticularly useful in modelling software systems that can be described as a set of subsystems. 

In essence, the subsystems, or models, can be thought of as representations of real-world 

objects with mappings to real-world implementations. The relationships between objects 
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in the model must be consistent with the real world. Similarly, simulation of the model 

must be consistent with real-world implementation. It is the responsibility of the applica- 

tion executive to control the simulation and to ensure this consistency. For example, when 

the application executive provides the notion of time, it must associate simulation time 

with simulation behavior the way real-world time and real-world behavior are associated. 

With this in mind, it is evident that the application executive is the key element in the 

execution of applications within Architect, and is the focus of the remainder of this paper. 
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III.   Architect's Application Executive 

3.1    Introduction 

This chapter provides a comprehensive description of Architect's simulation environ- 

ment which is controlled by the application executive. The incorporation of the application 

executive into Architect was the result of three separate research efforts (9, 29, 32). As a 

result, the information detailing its implementation is spread throughout three thesis re- 

ports. This chapter brings all the information together into a single document and resolves 

any inconsistencies between the individual research efforts. 

Chapter II introduced the three execution modes supported by Architect and de- 

scribed the non-event-driven sequential mode which is controlled by an update algorithm. 

The primary focus of this chapter is on the two modes controlled by the application ex- 

ecutive: event-driven sequential and time-driven sequential. Both of these modes involve 

handling events and the passing of time. The major difference is in how the advancement 

of time is handled, as described in Section 2.5.2. In essence, an event-driven application 

executes as the result of the executive servicing events that are asynchronously raised by 

the application and executive subsystems. A time-driven application executes as a result 

of the subsystems reacting to changes in the clock. 

The purpose of this chapter is to document the current implementation of Architect's 

simulation environment. It does not attempt to analyze or evaluate this implementation; 

it merely consolidates the available information into a single, comprehensible document. 

Chapter IV provides an analysis of this implementation and identifies areas requiring mod- 

ification. 
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3.2    Big Picture 

Before focusing strictly on the application executive, it is important to gain a "big 

picture" understanding of an event-driven application in Architect. Figure 3.1 shows an 

object model of event-driven applications (29:19). This model was created using the tech- 
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Figure 3.1    Object Model of Event-Driven Domain in Architect 

niques of Rumbaugh as explained in (27). The model shows that an application is composed 

of one or more composition units and an executive. Each composition unit (abstract class) 

can connect to zero or many other composition units and is either a primitive object or a 

subsystem (concrete classes). Subsystems are in turn composed of other subsystems, prim- 

itive objects, an import area, and an export area.  These parts describe the components 
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of the OCU model discussed in Chapter II. In order to support event-driven execution, 

several additions were incorporated into the basic OCU model. The executive needs to 

maintain a list of events, and it requires a clock to monitor the passage of time. Ten 

different types of events are used to control the execution of the application; these are 

defined later in Section 3.5.1. The events are sent to and collected from the InEvent and 

the OutEvent areas of top-level subsystems by the application executive. 

3.3    Domain Analysis 

The application executive is a supervisory program, and as such, it manages resources 

for the rest of its associated application. The domain analysis techniques of Prieto-Diaz (21, 

22) and Tracz (28) were adapted to define a domain analysis process which was used to 

perform a domain analysis over the domain of supervisory programs. The result of this 

domain analysis was the creation of an object model of an application executive. A detailed 

discussion of the domain analysis process can be found in Appendix A of Welgan (32), and 

the resulting object model appears in Figure 3.2. 

3.3.1    Application Executive Services. One of the key results of the domain 

analysis was the identification of services that an application executive must provide to 

the composed models (subsystems). These services, as defined by Welgan (32:24-25), are 

as follows: 

1. Event Handling - The executive services events raised by the application during 

execution. The executive orders events and may generate events for the application 

executive and the application subsystems. 
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Figure 3.2    Application Executive Object Model(32:27) 

2. Registration - The executive receives application-specific requests for executive ser- 

vices. This involves building executive data structures with information about ap- 

plication subsystems. This enables the executive to keep track of each subsystem's 

execution state. For example, the executive subsystem collects the connections in 

the composed application and controls them throughout application execution. 

3. Activation - The executive activates particular subsystems when it's time for them 

to execute. The order of activation is determined by the schedule and by the current 

execution state of the component that must execute. Activation is the result of an 

event and may cause other events to be generated. 
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4. Communication - The executive supervises internal application data transfer. It 

manages connections between components and provides inputs for processes when it 

is time for them to execute. 

5. I/O Handling - The executive supervises application calls for external I/O services. 

It controls external device interaction with the application. It manages application 

access to device drivers and buffers for those devices. 

6. Scheduling - The executive makes an execution schedule for the application. It orders 

events and determines how to serialize concurrent events. 

The application executive domain model shown in Figure 3.2 depicts the objects that were 

identified to carry out these services. 

34    Transformation from Domain Model to Architect's OCU-Based Architecture 

The application executive domain model consists of objects and operations that per- 

form the executive services listed in Section 3.3.1. The OCU architecture provides a useful 

model in which to encapsulate these objects and operations. 

34.1    Executive as a Single,  Top-Level Subsystem. Currently, Architect's ap- 

plication executive consists of a single, top-level subsystem for each of the event-driven 

sequential and time-driven sequential modes. The subsystem controls a set of primitive 

objects that encapsulate the services required by the executive. The application executive 

primitives, as defined by Welgan (32:38-39), are as follows: 

• Component Manager Primitive 

• Device Manager Primitive 
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• Event Manager Primitive 

• Connection Manager Primitive 

• Clock Manager Primitive 

The first two primitives are not currently used; they are included for future expansion 

to executives that support concurrent execution of application subsystems. The event 

manager primitive handles all events for the application. This primitive contains an update 

method that adds events to an event list, services the event, and removes the event from the 

event list. It employs Refine™ function calls that pass control to application components 

and collect events raised by the components during execution. The connection manager 

primitive manages a set of connection objects that link subsystems in the application. 

This primitive contains update methods that return connection state when needed. The 

methods also read data from component export areas and write data to component import 

areas directly. The connection manager also raises events that must be placed on the event 

list by the event manager. The clock manager primitive keeps time for the application. 

The domain model of Figure 3.2 contains more objects than the primitives listed 

above. For example, there is no registrar primitive. The registration of application compo- 

nents is carried out implicitly during the composition process, therefore, the registrar is not 

included explicitly as a primitive object. Similarly, the device object and the component 

object are part of the composed model (32). 

3.5   Incorporation of Events and Event Processing 

With the incorporation of the application executive into Architect, it was necessary to 

determine the type and structure of events that would be needed to support the new modes 
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of execution. In addition, there were several architectural modifications made during the 

incorporation of the application executive. 

3.5.1 Events Types. One of the first steps in adding event processing to Architect 

was the identification of the types of events needed to control the execution of an applica- 

tion. Events were broken down into two classes: application events and executive events. 

All subsystems need to manage (route) both classes of events; distinction between the two 

lies in which type of subsystem does the actual processing of the event. The executive 

processes executive events, and the application subsystems process application events. 

3.5.1.1 Application Events. There are two types of application events. The 

first is the Update event. This event is used to tell a primitive object to execute its Update 

function. The second is the SetState event. This event is used to establish a new state for 

a primitive by setting one or more of its attribute values and possibly making these values 

available as output. 

3.5.1.2 Executive Events. Similarly, there is a set of Executive events. Start 

and Stop control the beginning and ending times of the simulation. Transmit and Receive 

control the exchange of data between top-level subsystems. NewData notifies a top-level 

subsystem it has new data in its import area. Remove notifies the event manager that an 

event has become stale and needs to be removed from the event list. Activate and Done 

events are included for future implementation of concurrent modes. 

3.5.2 Event Structure. Once the event types were resolved, the structure of 

events was defined.   It was determined that all events needed the following information: 
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the time the event was to take place, the path to the target (routing scheme), the priority of 

the event, and the target of the event. This common information is depicted in Figure 3.3, 

where the ellipsis implies that the event may contain additional information. 

Event 

Routine Event Event 
•   •   • Event 

Time 
Routing 
Scheme 

Event 
Priority- 

Event 
Target 

Figure 3.3    Common Information for All Events 

The additional information varies from one type of event to another. For the Update 

and NewData events, no additional information is required. The SetState event contains 

additional, domain-specific information pertaining to attribute names and attribute values 

of the target primitive. The Receive event has an additional field denoting the target 

import object for the data being sent. The Transmit event has three additional fields: 

one identifying the export object the data is coming from and one each for the subsystem 

and primitive that produced the data. The Start event has a field for the start time, 

and, similarly, the Stop event has one telling the stop time. The Remove event contains 

information for the event manager, specifying the type and name of the event to be removed 

from the event list. The Activate and Done events have additional fields but are not 

expanded on here since they are not used in the sequential modes of execution. 

3.5.3 Architectural Modifications. In order to support the application executive 

and event processing, it was necessary to make some modifications to Architect's OCU ar- 

chitecture. This section summarizes the changes and additions that were made; a complete 

description of the architectural changes can be found in (9). 
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3.5.3.1 Consolidation of Import and Export Areas. With the addition of 

the application executive, Architect needed to provide support for multiple independent 

subsystems. An independent subsystem is a hierarchical structure of subsystems and 

primitives that is a self-contained composition. It is unaware of any other subsystems and 

exhibits a complete behavior. Any composed application with an application executive 

has at least two independent subsystems, since, in the OCU sense, the executive is just 

another subsystem. These two subsystems are independent, communicating subsystems 

and neither is subordinate to the other. The incorporation of independent subsystems 

prompted a change in the original implementation of the import and export areas. The 

original implementation, in keeping with OCU documentation (16), had an import area and 

an export area associated with each subsystem of a composed application (see Figure 3.4). 

According to Gool, this was no longer feasible because "allowing multiple independent sub- 

systems to connect to subordinate subsystems of other independent subsystems obligated 

subsystems to know more about their environment than intended by the SEI" (9:6-10). 

Therefore, the import areas and export areas were consolidated at the top-level subsystem 

of each independent subsystem (see Figure 3.5), and independent subsystems within an 

application can only communicate and share information through their import and export 

areas. 

In order to support this change, it was necessary to ensure that only the appropriate 

primitive within an independent subsystem could access its import and export data. This 

was accomplished by partitioning the import and export areas and adding the owning 

subsystem and the import/export path to data in the import/export areas. To illustrate 

this, Figure 3.6 shows a sample independent subsystem, and Figure 3.7 shows what data 
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SUBSYSTEM 

Figure 3.4    Original Import Export Implementation 

in the associated import and export areas might look like. In Architect, the data takes the 

form of import and export objects. The data fields shown in Figure 3.7 are attributes of 

the import and export objects. 

The top-level subsystem is now responsible for managing access to the import area 

and export area for all of its subordinate primitives. When the import area is changed as 

a result of a connection object placing new data there, the executive informs the top level 

subsystem of the new data via a NewData event. If the new data is for one of the top- 

level subsystem's primitives, it schedules an Update event for that primitive. Otherwise, it 

passes the NewData event down the hierarchy to the appropriate subordinate subsystem 
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Figure 3.5    Independent Subsystems Represented as an Executive Subsystem and an Ap- 

plication Subsystem 

that is superior to the primitive identified as the destination of the new data. The details 

of the flow of events through subsystems can be found in Section 3.5.4. 

3.5.3.2 Connection Objects. Another by-product of introducing an appli- 

cation executive and independent subsystems into Architect was the need to modify the 

way that subsystems communicate. Imports and exports within an independent subsys- 

tem communicate via source objects and target objects. These two types of objects are 

functional converses, and they identify either the source export object that produces the 

information for this import object or the target import object for the information produced 

by this export object. 

In addition, there needed to be a way for independent subsystems to exchange data. 

A connection object was developed to perform this function. The connection object serves 
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Figure 3.6    Sample Subsystem 

the same purpose as the source and target objects; however, it connects the import and 

export objects of independent subsystems. The connection object serves as a link between 

independent subsystems that buffers the data that flows between them. It has associated 

with it a source object (export object) and a sink object (import object). The connection 

object raises a Receive event when it gets new data. This notifies its sink object that it 

has new data which must be considered by the sink object as it executes. 

Figure 3.8 shows the relationship between source, target, and connection objects. 

Keep in mind, each of these connect import and export objects, not import and export 

areas. Each import (export) area consists of a set of import (export) objects, and there 

is an import (export) object for each separate data item in the import (export) area. 
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Import Area 

Import-Name Category Type Import-Value Consumer Owner-Subsystem Import-Pair Import-Changed 

Input 1 Signal Bool T Obj 2 Subl Subl False 

Input 1 Signal Bool T Objl Sub 2 Subl,Sub2 False 

Input 2 Signal Bool Nil Objl Sub 2 Subl, SuK False 

Export Area 

Export-Name Category Type Export-Value Producer Owner-Subsysterr  Export-Patl 

Output 1 Signal Bool T Obj 1 Sub 2 Subl, Sub2 

Output 1 Signal Bool T Obj 3 Sub 2 Subl,Sub2 

Figure 3.7    Sample Import/Export Information and Data 

Furthermore, each export object may need to provide its information to more than one 

import object, resulting in more than one connection object associated with each export 

object. Therefore, each import (export) area has potentially many connection and/or 

source/target object pairs associated with it. Figure 3.8 does not show all the source, tar- 

get, and connection objects that would be instantiated for this application. It displays only 

one of each type in order to show the relative location of each in a composed application. 
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Figure 3.8    Independent Subsystems with Source, Target, and Connection Objects 

3.5.3.3 InEvent and OutEvent Areas. The previous section discussed how 

data moves between independent subsystems in Architect by using import and export 

areas of top level subsystems. The import area and export area are provided by Lee as 

components of the OCU model (16); however, he does not make any reference to events 

or event processing within the OCU framework. The implementors of Architect chose 

to keep event flow separate from data flow. It was decided not to incorporate events 

into the import and export areas but to provide separate InEvent and OutEvent areas. 

With these constructs, event passing was implemented in much the same manner as data 

passing. Events flow into the subsystem via the InEvent area, and events exit the subsystem 

via the OutEvent area. Although similar to the import and export areas, one significant 

difference exists: all subsystems have InEvent and OutEvent areas where only the top-level 
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Subsystems of independent subsystems have an import area and an export area. Figure 3.9 

shows an example subsystem with InEvent and Out Event areas. 

EXPORT 

CONTROLLER 

OutEven! 

Figure 3.9    Subsystem With InEvent and OutEvent Areas 

3.5.4    Flow of Events Through Subsystems. As with data flow, events enter 

independent subsystems via the top-level subsystem. When the executive processes an 

event, it determines which top-level subsystem the event's target primitive is subordinate 

to, places the event in that subsystem's InEvent area, and invokes the subsystem's Update 

function. When the top-level subsystem is updated, it retrieves the event in its InEvent 

area, interrogates the event, and uses information encapsulated in the event to decide 

what to do next. The information required is in the routing scheme; the routing scheme of 

the event contains a sequence of subsystems that are superior to the target object of the 
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event. Figure 3.10 shows an example subsystem with an event targeted for a subordinate 

primitive; emphasized are the target primitive and routing scheme fields of the event. 

Event 
Time 

Event 
Priority 

Routing 
Scheme 

Event 
Target 

__---- 
 — — 

\ 
v~-v 

[Subsystem 1, Subsystem 2] Primitive 1 

IMPORT 
3ORT—J EXPORT 

INEVENT 

SUBSYSTEM 
1 OUTEVENT 

INEVENT 
SUBSYSTEM 

2 OUTEVENT 

Figure 3.10    Example Subsystem with Associated Event Targeted For Primitive 

Using the event's routing scheme to process the event, the top-level subsystem will 

remove itself as the first element of the sequence. If there are any subsystems remaining 

in the routing scheme, the top-level subsystem passes the event to the InEvent area of the 

subsystem that is now at the head of the sequence and invokes that subsystem's Update 

function. The event is passed down the independent subsystem's hierarchy in this manner 
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until, eventually, the sequence of subsystems in the routing scheme is empty. When this 

occurs, the destination primitive is subordinate to the current subsystem. The subsystem 

consumes the event and invokes the appropriate function of the target primitive. For 

example, if the subsystem consumes an Update event for one of its primitives, the controller 

of the subsystem will invoke the Update function of the associated primitive. When the 

primitive finishes its operation, any newly generated application events are passed back 

up the hierarchy of the independent subsystem, creating the routing scheme for the newly 

generated events. When the events reach the top-level subsystem, they are passed to the 

event manager of the application executive for insertion into the event list. 

3.5.5 Subsystem Controller. In Section 2.3.5, the update algorithm for the non- 

event-driven sequential mode of operation was introduced. In this mode, the update algo- 

rithm serves as the Update function for the controller of the subsystem. Each subsystem 

requires an update algorithm, furthermore, each update algorithm must be individually 

specified by the application composer. In the event-driven and time-driven modes, all 

subsystem controllers in the application have identical Update functions. When called by 

the executive, the Update function gets an event from its InEvent area and either routes 

or consumes the event as described in Section 3.5.4. Once the event has been processed 

(either by this subsystem or a subordinate subsystem), any new events raised during the 

processing of this event are passed from the OutEvent area to the application executive 

for insertion into the event list. Finally, before relinquishing control, the controller clears 

its InEvent and OutEvent areas. Having identical Update functions simplified the design 

of the controller and simplifies the composition process for the application composer. 
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3.5.6 Event Servicing. The event manager primitive maintains an event list 

which is a sequence of events. The ordering of the events in the sequence is determined 

first by their time and then by their priority. When the executive subsystem calls the 

Update function of the event manager primitive, it services the next event in the event 

list. The servicing of an event may include starting/stopping execution, adding/deleting 

events to/from the event list, or routing events to application subsystems. In event-driven 

sequential mode, when an event is serviced, it is removed from the event list and saved in 

an "old events list". This list is available to the user following application execution, thus 

allowing the user to view the actual sequence of events raised during execution. 

3.5.7 Delay Simulation. In order to provide realistic simulation, many applica- 

tion domains require the environment to simulate delays associated with transient behavior 

of components. For example, consider the delay required for a signal to propagate from the 

input to the output of a component in the logic circuits domain. During this propagation, 

the component is in a transient state. The new output of this component should not be 

provided to any other components that use this signal as an input until the associated 

propagation delay has expired. 

In the event-driven mode, the application executive uses the application events (Set- 

State and Update) to control when a state changes with respect to time. To help demon- 

strate this, Figure 3.11 shows a simplified functional model (see Rumbaugh (27)) of a 

primitive object from an arbitrary event-driven domain and its interfaces with the archi- 

tecture/executive. In accordance with the OCU model, the primitive object has Update 

and SetState functions and a set of attributes. 
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Figure 3.11    Simplified Event-Driven Functional Model 

When an application subsystem receives an Update event for one of its primitives, 

it calls the Update function of the appropriate primitive. The Update function, in turn, 

invokes the architecture function get-import to retrieve new input data from the import 

area. The primitive uses this new data and its internal state data to calculate a new 

state. It then determines the delay associated with this new state and invokes the gen- 

set-state-event function to generate a SetState event for itself at the proper relative time. 

The SetState event is passed to the executive and is inserted into the event list.   After 
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the delay has expired, the SetState event is serviced by the executive, and the object's 

SetState function is called. The SetState function updates the object's internal state and 

invokes the ev-set-exports function to update the object's export data. The new state data 

is now available to all other components that use it as input. 

In addition to updating the object's external state via the export area, the ev-set- 

exports function determines (via connection information) which other objects in the appli- 

cation consume the export data, writes the new data to their top-level subsystem's import 

area, and invokes the gen-update-event function to generate Update events for each recip- 

ient of the data. These Update events are sent to the application executive for insertion 

into the event list. 

3.6    Simulation Clock and Advancement of Time 

Before continuing with the instantiation of the application executives, it is impor- 

tant to explain how the advancement of time is handled by the application executive. 

During application composition, the application composer selects an execution mode (see 

Section 3.8.1). Whenever a mode other than non-event-driven sequential is selected, Ar- 

chitect automatically creates a global simulation clock. The global clock is used by the 

application executive to keep absolute simulation time. Individual subsystems do not read 

the clock during execution but are provided the notion of time in a manner dependent on 

the chosen mode of execution. 

3.6.1 Event-Driven Mode. In the event-driven sequential mode, subsystems raise 

events, stamp them with a relative time, and send them to the event manager for insertion 
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into the event list. The event manager keeps a copy of the current time in its import area, 

and when it receives an event to be added to the event list, it stamps the event with the 

correct absolute time before storing it in the events list. The global clock can only be 

updated to a time equal to t + r (where r is the relative difference in time between t and 

the scheduled time of the next event in the event manager's event list) when the following 

three conditions are true: 

1. There are no more time t events scheduled. 

2. It is not possible for any top-level subsystem to schedule anymore time t events. 

3. The next event in the application occurs at r units after the current time (32:31). 

3.6.2 Time-Driven Mode. The advancement of time and management of events 

is handled differently in the time-driven mode. In the event-driven mode, primitives do 

not know about the passage of time except through the receipt of SetState events. In the 

time-driven mode, time is provided via a connection object to each primitive that requested 

it during registration (composition); therefore, primitives do not schedule SetState events 

for themselves. Since they receive time as an input, they will know when it is time to make 

their state data available to their consumers. 

In this mode, the event list contains an Update event for each primitive that receives 

the simulation time and an Update event for the global clock. Following a Start event, the 

event manager services the application Update events in a round-robin fashion. When their 

Update function is called, the primitives react to the current time by either executing or 

not executing at that time. Following event servicing, the Update events are not removed 

from the event list unless explicitly told to do so by the application via a Remove event. 
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However, as in the event-driven mode, any executive events (i.e.   Transmit or Receive) 

serviced during this simulation time are removed following event service. 

Once all of the application Update events are serviced, the Update for the clock 

is serviced resulting in the global clock being incremented, thus simulating a clock tick. 

Following the "tick" of the clock, the event manager will repeat this cycle of round-robin 

activation of the application primitives until the clock reaches the stop time specified in 

the Stop event. 

Figure 3.12 shows a simplified functional model of a primitive object from a time- 

driven domain. As with the event-driven mode (see Section 3.5.7), the primitive has an 

Update function, a SetState function, and a set of attributes. When an Update event 

for this primitive is serviced by the executive, the primitive's Update function is called. 

When it is updated, the primitive calls the get-import function, reads the time (placed 

there previously by the executive), and decides whether or not to execute depending on 

the current simulation time. If it is time for the primitive to execute, it retrieves new 

data from the import area using the get-import function and uses this data, along with its 

current internal state data, to calculate a new state. The primitive updates its internal 

state and calls the ev-set-exports function to update its export data. 

3.7   Instantiation of Executives 

Section 3.4.1 introduced the application executive as a single, top-level subsystem and 

developed the primitive objects needed to provide the services for the executive domain. 

The primitives themselves are not an executive until they are joined together under the 
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Figure 3.12    Simplified Time-Driven Functional Model 

control of a subsystem controller.  This section presents the subset of primitives used to 

instantiate the event-driven sequential and time driven sequential application executives. 

In Architect, executable applications are expressed in a domain-specific language 

(DSL) that requires three grammars: a domain-specific grammar, an OCU grammar, and 

an executive grammar. The DSL needs to inherit from both the OCU and executive gram- 

mars. However, Dialect restricts a grammar to inherit from at most one other grammar. 

Therefore, the executive and OCU grammars were combined into a single grammar. The 

event-driven and time-driven application executives were then expressed using this com- 
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bined OCU/executive grammar and saved to separate files. Now, when the application 

composer selects the execution mode during application composition, the appropriate ap- 

plication executive subsystem is parsed into the application. With this implementation, 

the application executives do not need to be instantiated each time a new application 

is composed; the application executive subsystem is brought into the current application 

automatically and is transparent to the user. 

3.7.1 Event-Driven Sequential Executive. The application executive subsystem 

for this mode consists of the following primitives: 

• Event Manager Primitive 

• Connection Manager Primitive 

• Clock Manager Primitive 

These primitives are sufficient due to the restrictions that sequential execution places 

on the application. The component manager primitive is responsible for keeping track of 

the execution state of all application subsystems. With a single thread of control, only 

one subsystem can execute at a time; the flow of control is passed from one subsystem to 

another and there is no need to manage the execution state of all subsystems. The device 

manager primitive manages the execution state of all input/output devices used by the 

application. Once again, with only a single thread of control, only one device can be active 

at a time, therefore, this primitive is not needed. In this mode, the instantiated executive 

already contains built in Start and Stop events. The application composer can change 

the associated start and stop times if desired. In addition, the application composer must 

insert at least one Update event into the event list to begin execution of the application. 
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3.7.2 Time-Driven Sequential Executive. The application executive subsystem 

for the time-driven sequential mode contains the same primitives as the event-driven ex- 

ecutive defined in Section 3.7.1. This mode also has a single thread of control, and for the 

same reasons as above, does not require the component manager and the device manager 

primitives. As was the case with the event-driven mode, there are Start and Stop events 

built into the instantiated executive. Prior to execution of the application, the application 

composer must schedule Update events for all primitives that requested the simulation 

time during composition(see Section 3.6.2). 

3.8    Executive Operation 

The previous sections of this chapter developed the incorporation of the applica- 

tion executive into the current implementation of Architect. This section builds on the 

information developed previously to provide a high-level description of the application ex- 

ecutive's operation. The executive has two phases of operation: registration and execution. 

These phases are presented below along with a brief discussion of the composition of an 

application. 

3.8.1 Registration. During the registration phase, the application executive de- 

termines which components need executive services during the execution of the application. 

It was mentioned in Section 3.4.1 that registration is carried out implicitly during the com- 

position of the application. With this in mind, the development of the registration phase 

begins with a look at the application composition process. 
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While composing an application using the AVSI, one of the first steps the application 

composer does is select the execution mode. Originally, this was accomplished by the 

AVSI prompting the composer for the desired execution mode, followed by a prompt for 

the domain (event-driven circuits, cruise missile, etc.) in which the application would be 

composed. There was no error checking to prevent an inexperienced user from choosing 

incompatible domains and executives. As part of a concurrent research effort, Guinto's (11) 

enhanced AVSI has fixed this problem. Instead of selecting the application domain and 

execution mode in separate steps, the application composer selects the domain and the 

appropriate application executive file is loaded automatically. 

Once the execution mode has been selected, the application is composed using the 

mouse to drag and drop icons from the technology base. The icons represent the primitives 

from the domain-specific technology base, and in selecting an icon from the technology base, 

an instance of that primitive is created. The application composer creates the appropriate 

hierarchy of subsystems and primitives to specify the application. Next, the composer 

uses the AVSI to connect the inputs and outputs of the primitives. This step creates the 

connection, target, and source objects that connect the import and export objects. The 

final step in the registration phase is to schedule the initial set of events on the event list 

necessary to begin the execution, as presented in Section 3.6. 

3.8.2 Execution. Following the registration phase, the application composer can 

choose to execute the application. The execution phase begins with the event manager 

servicing a Start event. Following the Start event, the execution continues in a manner 

dependent on the application executive mode selected. In the event-driven mode, the event 
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manager orders the events it services first by time and second by priority. In this mode, 

when the event manager services an event it is removed from the event list. In addition, 

the event manager must be able to add application (i.e., SetState) and executive events 

(i.e., Transmit) to the event list. Execution stops when the Stop event is serviced or the 

simulation time reaches the time specified by the attribute of the Stop event. 

In time-driven mode, the current time is broadcast to all the primitives, and they 

react to the new time either by executing or not executing at that time. This is explained 

in more detail in Section 3.6.2. 

3.9    Summary 

This chapter presented a comprehensive description of Architect's application exec- 

utive from domain analysis through implementation. The current executive consists of a 

single subsystem that provides executive services for application components. Two modes 

of execution are currently supported: event-driven sequential and time-driven sequential. 

The incorporation of the application executive into Architect required the evolution of its 

OCU-based software architecture to support event processing. Chapter IV provides a criti- 

cal evaluation of Architect's simulation environment which is controlled by the application 

executive and identifies areas in which it can be improved and/or enhanced. 
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IV.   Evaluation of Architect's Application Executive 

4-1    Introduction 

Chapter III provided a thorough description of the current implementation of Ar- 

chitect's simulation environment. This chapter analyzes the current implementation and 

identifies areas in which Architect's next generation simulation environment can be im- 

proved and/or enhanced. 

In addition to the theory supplied by the applicable thesis reports (9, 29, 30, 32), the 

source code of the Architect system was reviewed to help analyze the application executive. 

The code helped clarify any inconsistencies in the thesis reports and helped identify ways 

in which the actual implementation differed from the intended implementation. 

4-2    Source, Target, and Connection Objects 

Section 3.5.3.2 presented how subsystems within an application communicate via 

source, target, and connection objects. There is no reason why two subsystems within 

an independent subsystem should exchange data any differently than two independent 

subsystems. This section presents a problem with the way data is currently exchanged and 

provides a solution that not only solves this problem but also standardizes the exchange 

of data between all subsystems in the application. 

4-2.1     Violation of OCU's  Visibility Rule. The current implementation of the 

source and target objects violates the visibility rule defined by the designers of the OCU 

model. According to SEI documentation, subsystems "... have no knowledge of other 

subsystems in the application" (16:18).   Currently, each import object has an attribute 
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called Sources. This attribute is a map from the import object to a set of source objects. 

Each source object contains the name of a source subsystem and a source primitive that 

can provide this import object with its data. Through this Sources attribute, the import 

object can "look" to each of its potential sources for data. Similarly, each export object 

has a Targets attribute that is a map from the export object to a set of target objects. The 

target objects provide the export object with the target subsystems and target primitives 

of the data it is producing. 

As an example of how this information is used, consider Figure 4.1. Except for the 

EVENT LIST 

Update 
event 

IMPORTS 

import data 

SetState 
event 

Figure 4.1    Event-Driven Functional Model with Highlighted Problem Area 
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additional shaded area, this diagram is the same simplified functional model introduced in 

Section 3.5.7. The shaded portion emphasizes the area where the visibility rule is violated. 

In this diagram, the primitive calls the ev-set-export function to update its external state. 

The algorithm of the ev-set-export function is as follows: 

1. store the new data to the associated export object 

2. use connection information to 

(a) store the data directly to all import objects that receive it 

(b) generate Update events for all target primitives of the data 

3. generate a Transmit event to inform the connection manager that one of its connec- 

tion objects needs to transfer data 

The problem is the connection information originates from within the subsystem. 

It comes from the Targets attribute of the export object. The ev-set-export function 

enumerates over the set of Targets for this export object, storing the new data directly 

into the associated import objects in the target subsystems' import areas and generating 

Update events for the target primitives. This is clearly a violation of SEI's intent that 

subsystems do not have any knowledge of the other subsystems in the application. 

4-2.2 Solution. In solving the visibility problem, it is also desirable to provide 

a standardized method to exchange data between all application subsystems. Due to the 

constructs already built into Architect, the solution to this problem does not require major 

modifications to the current implementation. The key is to create a connection object for 

each export object, not just for export objects connecting independent subsystems. Once 

each export object has an associated connection object, the ev-set-export function only 
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needs to update the data of the export object and then generate a Transmit event for the 

associated connection object. The details of incorporating this change are developed in 

the next section. 

4-2.3 Implementation. Before specifically addressing the implementation issues, 

it is important to develop some background on how import, export, and connection objects 

are instantiated. Import and export objects are instantiated during application compo- 

sition. When the application composer adds a primitive object to the application, the 

correct number of import and export objects are created, according to the number of in- 

puts and outputs the primitive has. In addition, when inputs and outputs are connected, 

methods exist to create instantiations of connection objects and initialize the Source-Exp 

and Sink-Imp attributes of the connection objects. The Source-Exp attribute is a mapping 

from the connection object to an export object, and the Sink-Imp attribute is a mapping 

from the connection object to an import object. Currently, connection objects are only 

created for connections between subsystems of independent subsystems. 

The first step in implementing the solution is to modify the Sink-Imp attribute to be 

a mapping from a connection object to a set of import objects. As connections are made, 

the Sink-Imp set can be constructed in the same manner that the Targets set is currently 

built. Next, the existing methods to create connection objects can be modified to enable 

instantiations between all subsystems not just top-level subsystems. When connections 

are made between primitive objects, if the source primitive's corresponding export object 

already has an associated connection object, the sink primitive's import object is added 

to the Sink-Imp set, otherwise, a new connection object is instantiated. 
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With this change, the algorithm for the ev-set-export function is simplified. The new 

algorithm is as follows: 

1. store the new data to the associated export object 

2. generate a Transmit event to inform the connection manager that one of its connec- 

tion objects needs to transfer data 

The corresponding functional model for this modification is shown in Figure 4.2.   The 

Figure 4.2    Modified Event-Driven Functional Model 

shaded area shows the part of the model that has changed. Now when the primitive calls 

ev-set-export, the external state is updated and a Transmit event is generated for the 
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connection manager. When the Transmit event is serviced by the application executive, 

the new data is passed to each import object in the Sink-Imp set and an Update event is 

generated for each target primitive of the new data. 

With this modification, each subsystem in the application no longer has any knowl- 

edge of the other subsystems. It only needs to generate Transmit events for the connection 

manager. When the Transmit events are serviced, the corresponding connection objects 

contain the information necessary to move the data between the subsystems in the appli- 

cation. Although this discussion concentrated on the event-driven mode, it applies to the 

time-driven mode as well, with one minor modification. In the time-driven mode, servicing 

of the Transmit event will only send the new data to the appropriate import objects; it 

will not generate any Update events. 

4-3    Consolidation of Import and Export Areas 

4.3.1 Deviation from OCU Standard. Section 3.5.3.1 explained how the import 

and export areas of an independent subsystem were consolidated at the top-level subsys- 

tems. The reason given for this deviation from the standard OCU model was that allowing 

subsystems from different independent subsystems to connect to each other violated OCU 

visibility restrictions. It is not clear how allowing these connections would give the subsys- 

tems visibility to each other. Assuming that it does, it is also not clear why one property 

of the OCU model (visibility) was preserved while another (all subsystems have import 

and export areas) was not. 
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4-3.2 Solution. Since insufficient justification could be found for consolidating 

the import and export areas at the top-level subsystems, the solution to this is to simply 

allow all subsystems to once again have import and export areas. The necessary changes 

are discussed in the next section. 

4.3.3 Implementation. The first change is to modify the information encapsulated 

in each piece of data (import/export object) in the import and export areas. Figure 3.7 

displayed sample import and export areas along with their associated import and export 

objects for a sample subsystem (Figure 3.6). The owning subsystem and the import/export 

path are no longer necessary. Figure 4.3 shows how the import and export objects are 

simplified with this modification. 

Import Area 

Import-Name  Category  Type   import-Value   Consumer  Import-Changed 

Input 1 Signal Bool T Ob) 2 False 

Input 1 Signal Bool T Ob|1 False 

Input 2 Signal Bool T ob| 1 False 

Export Area 

Export-Name Category Type Export-Value Producer 

Output 1 Signal Bool T Obj 1 

Output 1 Signal Bool T Obj 3 

Figure 4.3    Modified Import and Export Data 

Next, the code that creates import/export objects in the import/export areas needs 

to be modified. The code responsible for this is the build-import-export-areahxaction. Once 

a subsystem is composed, this function is called by the visual system and has as an input 

parameter, a subsystem.   It enumerates over the set of primitive objects that the input 
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Subsystem controls and adds new import/export objects to the import/export area of the 

highest-level subsystem to which the input subsystem belongs. An import/export object 

is added for each input/output associated with the primitives. 

The current implementation does not alter how subsystem objects are modelled in 

Architect. All subsystem objects still have an import area and an export area; however, 

only those belonging to top-level subsystems are currently utilized. Therefore, to sup- 

port import and export areas for all subsystems, the only modification required for the 

build-import-export-area function is to have it add the import/export objects to the input 

subsystem's import/export areas instead of those associated with its the top-level sub- 

system. This change actually simplifies the build-import-export-area function since it no 

longer needs to identify the top-level subsystem to which the input subsystem belongs. 

The modification of connection objects as developed in Section 4.2 supports the 

exchange of data between import and export areas of subsystems at all levels. It does not 

differentiate between top-level subsystems and lower-level subsystems. It is only concerned 

with connecting import and export objects, regardless of their owning subsystem's position 

in the hierarchy of subsystems in the application. 

4-4    Modification of Event Flow 

Section 3.5.4 developed how events flow through the subsystems during the execution 

of an application. In essence, events are passed to top-level subsystem's InEvent areas. 

When the Update function of the top-level subsystem is called, the top-level subsystem 

selects an event to process, and the routing scheme of the event is used to pass the event 

down the hierarchy of the independent subsystem to the consuming subsystem. Similarly, 
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when events are generated by low-level primitive objects, the event is passed back up the 

hierarchy, creating the routing scheme for the new events. The routing of events up and 

down the hierarchy of the independent subsystem is not very efficient in terms of execution 

time. 

4-4-1    Solution. Since each subsystem has an InEvent area and an OutEvent 

area, the routing scheme is an unnecessary attribute of an event. The routing scheme can 

be replaced with the consuming subsystem. When an event is serviced by the application 

executive, it can be passed directly to the InEvent area of the subsystem that consumes it. 

When new events are generated at a low-level subsystem, they can be sent directly from 

the OutEvent area of that subsystem to the event manager. Depending on the number 

of levels of nested subsystems within an independent subsystem, this would minimize 

execution time, reduce complexity, and decrease memory usage. 

4-4-2 Implementation. To pass events directly to/from the consuming/producing 

subsystems, the first step is to change the routing scheme attribute of an event from a 

sequence of subsystems to a single subsystem, representing the consuming subsystem. Fig- 

ure 4.4 shows this modification. This figure uses the example subsystem of Figure 3.10 to 

illustrate the structure of an event before and after this modification. From the figure, it is 

easy to see that the current implementation uses the routing scheme information encapsu- 

lated in an event's data structure to pass the event down the hierarchy of the independent 

subsystem to the consuming subsystem. As composed applications become more complex 

and the number of nested subsystems in an independent subsystem increases, the number 

of subsystems in the routing scheme sequence increases, directly increasing execution time 
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Figure 4.4    Modified Event Structure 

and memory usage. The data structure of an event in the new implementation shows how 

the event is passed directly to the consuming subsystem. In this implementation, the exe- 

cution time and memory required to store this data structure remain constant regardless 

of the complexity of the composed application, greatly simplifying event passing within 

Architect. Furthermore, subsystems in Architect are declared to have unique names; there- 

fore, including the name of the consuming subsystem is all that is needed to use built-in 

Refine™ object management functions to uniquely identify the appropriate InEvent and 

OutEvent area. 
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Next, the code that processes the routing scheme and routes events within an in- 

dependent subsystem needs to be modified. The code responsible for this is the event- 

driven-controller function. This function is used for both event-driven and time driven 

modes. 

Currently, the event-driven-controller function is passed a subsystem as an input 

parameter. The algorithm for this function is as follows: 

1. get the next event from the InEvent area 

2. if the size of the routing scheme sequence equals one (the event is consumed by this 

subsystem) then 

(a) determine the type of event (SetState, Update, etc.)  and call the appropriate 

function of the target primitive 

(b) put newly generated events in the OutEvent area 

3. else (the event is for a subordinate subsystem) 

(a) remove the first subsystem from the routing scheme 

(b) find the subsystem now at head of the routing scheme and place the event in 

its InEvent area 

(c) recursively call the event-driven-controller function 

4. for all SetState events in the OutEvent area, prepend current subsystem to the rout- 

ing scheme (creates the routing scheme as the events traverse back up the subsystem 

hierarchy after returning from each recursive call) 
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5. if the execution mode is time-drive then remove all application events from the Out- 

Event area (since time-driven primitives are not supposed to generate application 

events as presented in Section 3.6.2) 

6. return the events in the OutEvent area to the executive 

By passing events directly to/from the consuming/producing subsystems, the event- 

driven- controller function is simplified significantly. The function still receives a subsystem 

as its input parameter; however, the input parameter is now the consuming subsystem of 

the event. In addition, since time-driven primitives do not generate application events, the 

step in the above algorithm that removes application events from the OutEvent area in 

the time-driven mode is unnecessary. The new algorithm is as follows: 

1. get the next event from the InEvent area 

2. determine the type of event (SetState, Update, etc.) and call the appropriate function 

of the target primitive 

3. put newly generated events in the OutEvent area 

4. return the events in the OutEvent area to the executive 

This new algorithm is significantly less complex and will execute faster than the 

current implementation. In addition, it is not dependent on the other modifications already 

presented in this chapter. It can be implemented, with equal success, either individually 

or in conjunction with the the other modifications. 
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4-5    NewData Event 

In addition to the modifications already presented in this chapter, one minor change 

should be made. Section 3.5.1 stated that the distinction between application events and 

executive events lies in which subsystem does the actual processing of the event. With 

this in mind, the NewData event should be an application event since NewData events 

are processed by application subsystems, not executive subsystems. To implement this 

change, all that is needed is a simple change to the code declaring the OCU domain model. 

Instead of declaring the NewData event to be a subtype of executive event, it needs to be 

declared as a subtype of application event. 

4-6    Summary 

This chapter analyzed the current implementation of Architect's simulation environ- 

ment and identified areas in which it could be modified to improve Architect's execution 

capabilities. In particular, three major modifications were identified. First, in order to 

provide a standardized method of exchanging data between subsystems and to restrict 

subsystems' visibility, connection objects need to exist between all export objects and the 

import objects they supply data for. Next, in order for Architect to conform to the OCU 

model, import and export areas need to be returned to all subsystems, not restricted to 

top-level subsystems. Finally, event routing needs to be modified so that events can be 

passed directly to/from the consuming/producing subsystem. 

In addition to identifying areas requiring modification, this chapter provided a solu- 

tion and a high-level discussion on how to implement each of the identified modifications. 

Once implemented, these modifications will reduce the complexity of Architect, and the 
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execution time of composed applications will be reduced. Building on the improvements 

already introduced, Chapter V presents areas in which the current simulation environment 

of Architect can be further extended. 
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V.   Extension of the Application Executive 

5.1 Introduction 

Chapter IV analyzed the current implementation of Architect and identified areas 

in which the simulation environment could be improved. This chapter takes the analysis 

of Architect's simulation environment one step farther and looks at ways in which it can 

be extended. In particular, it examines mixed-mode execution and visually composable 

executives. 

5.2 Mixed-Mode Execution 

In order to support mixed-mode execution, Architect must be able to support mul- 

tiple application executives within a single application. Before proceeding any further, it 

is important to present a brief justification as to why Architect should provide this capa- 

bility. If Architect is going to be successfully used to simulate real, large-scale systems, it 

needs to be able to support the composition and execution of systems that are composed of 

subsystems from multiple domains with different execution modes. For example, consider 

the software system required for a modern military aircraft. The overall system would 

be composed of many subsystems to include a navigation subsystem and a radar warning 

subsystem. The navigation subsystem needs to respond to regular increments in the clock 

and calculate new position, heading, elevation, etc. Therefore, this subsystem would be 

time-driven. The radar warning subsystem needs to respond to asynchronous events raised 

by the environment and would be event-driven. In addition, a concurrent research effort 

by Harris (12) used object-oriented database management system (OODBMS) support to 
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compose applications from different domains; however, the applications created were re- 

stricted to a single mode of execution. It follows that the next extension should not only 

allow multiple domains but also multiple execution modes. 

5.2.1 Alternatives. While analyzing this extension, two alternatives were consid- 

ered. The first alternative was to allow every subsystem in the application to be executed 

by a separate application executive, and the second approach was to allow only independent 

subsystems to be executed by separate executives. In this case, the execution mode of the 

top-level subsystem would determine the execution mode of all subordinate subsystems. 

In order to select between these two alternatives, it was necessary to identify some 

evaluation criteria upon which to base this decision. The decision was based on the fol- 

lowing: 

• size (memory usage) 

• complexity 

• flexibility 

• ease of implementation 

The first criterion considered was size. As composed applications become larger and 

more complex, it is possible that the applications could be limited by the amount of avail- 

able memory. Of the two alternatives considered, the second (independent subsystems with 

different execution modes) would reduce the potential number of application executives in 

the composed applications and therefore, use less memory. 

The second criterion considered was complexity. It is desirable to minimize the 

complexity of the system.   As the number of application executives in the application 
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increases, the complexity of the application increases.   With this in mind, the second 

alternative is once again the favored choice. 

The third criterion considered was flexibility. Flexibility refers to the ability to accu- 

rately model any real-world application. The advantage here goes to the first alternative, 

since there may be applications that would require each subsystem in an application to 

operate in a different execution mode; however, you could circumvent this using the sec- 

ond alternative by making every subsystem in the application a top-level subsystem and 

therefore, an independent subsystem. 

The final criterion considered was ease of implementation. Ease of implementation 

follows directly from complexity. The less complex the system, the easier it is to implement. 

Since the second alternative is less complex, it is also easier to implement. 

5.2.2 Independent Subsystems with Executives. After evaluating the criteria pre- 

sented in the previous section, it was decided that mixed-mode execution would best be 

implemented using the second alternative, namely, allowing a different execution mode for 

each independent subsystem. The initial step required for this extension of Architect was 

to create an object model of the new system. Figure 5.1 shows the object model that 

was developed to support mixed-mode execution, allowing multiple application executives 

within an application. This object model is very similar to the event-driven model pre- 

sented in Figure 3.1. The main differences are the application may now have multiple 

executives and the addition of a time manager subsystem. 

In the new object model, the application is composed of one or more composition 

units.   Each composition unit (abstract class) can connect to zero or more composition 
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Figure 5.1    Object Model of an Application Supporting Multiple Executives 
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units and is either a primitive object or a subsystem (concrete classes). All subsystems 

are composed of an import area, export area, in-event area, out-event area, and zero or 

more primitive objects. An independent subsystem is a subsystem that is composed of top- 

level and low-level subsystems. Top-level subsystems and low-level subsystems are in turn 

composed of zero or more low-level subsystems and zero or more primitives. The executive 

is a top-level subsystem, and there is zero or one executive instantiated to execute each top- 

level application subsystem (there will not be an executive for independent subsystems that 

execute in non-event-driven-sequential mode; the subsystems associated with this mode 

will have an update algorithm as presented in Chapter II). Finally, the time manager is a 

subsystem that controls the order in which the independent subsystems in the application 

execute. 

Figure 5.2 shows a block diagram of a composed application supporting mixed-mode 

execution. This is a high-level diagram of an application; the independent subsystems and 

executives would also have primitive objects and/or other low-level subsystems subordinate 

to them. This diagram is provided mainly to illustrate a big-picture view of how the time 

manager fits into the hierarchy of a composed application. 

5.2.3 Concept of Operation. Once the object model was specified, it was nec- 

essary to define how an application would execute with this new capability. There were 

two major areas that needed to be addressed: the advancement/management of time and 

data consistency between independent subsystems. These are discussed in the following 

sections. 
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Figure 5.2    Block Diagram of an Application Supporting Mixed-Mode Execution 

5.2.3.1 Time Management. The time manager subsystem was incorporated 

into the object model to handle this function; however, it was necessary to define exactly 

how the time manager would provide this service. Since the overall execution of the 

application is to remain sequential, the time manager needed to know the simulation time 

of the next event for each executive in the application and pass control to the one with 

the next simulation time. In order to do this, the time manager needs to maintain a list 

containing one entry for each executive in the application. Each entry, in turn, needs 

to include the executive name and the time of the next event that the executive is to 

service. When the Update function of the time manager is called, it searches the list for 

the smallest time value, t, and then calls the Update function of the appropriate executive. 
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The executive services all events in its event list for the given simulation time (all events 

originally in the event list scheduled for time t and any events generated for time t as a 

result of servicing other events). When the called executive is finished servicing all time 

t events, it returns the time of the next event to be serviced to the time manager and 

control is then given back to the time manager. The time manager once again selects the 

executive with the smallest next event time, and the cycle continues. 

5.2.3.2 Data Consistency. The next major area of concern was how to 

maintain data consistency as data is passed between independent subsystems. The steps 

necessary to maintain data consistency vary, depending on the execution mode of the 

producing (source) subsystem and the consuming (target) subsystem. There were two 

cases that needed to be considered. The first case is when the target subsystem's execution 

mode is event-driven, and the second is when the target subsystem's execution mode is 

time-driven. 

The first case is the simpler of two and will be examined first. In this scenario, 

the target subsystem's execution mode is event-driven, and the source subsystem is either 

time-driven or is under the control of a different event-driven executive. In either case, 

the servicing of a Transmit event in the source subsystem's executive will use a connection 

object to pass the data from the source export object to the sink import object. The execu- 

tive will then generate an Update event for insertion into the target subsystem's associated 

executive using the source executive's current time. Because of the way in which the time 

manager controls the execution of the independent subsystems (see Section 5.2.3.1), the 

time of the new Update event can not be earlier than the next event in the target exec- 
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utive's event list. In addition, the insertion of the Update event must be done differently 

than it was in the previous implementation. Previously, when an event was inserted into 

the event list, the executive was passed an offset, and event manager calculated the abso- 

lute simulation time prior to insertion into the event list. This will still work if the source 

export and sink import belong to the same independent subsystem; however, when they 

do not, the absolute simulation time is passed to the target subsystem's executive, and the 

executive tags the new event with this time. Finally, when the controlling executive fin- 

ishes servicing all events at the current simulation time, it will return the time of the next 

event and return control to the time manager. If the controlling executive is event-driven, 

it will return the time of the next event in the event list.  If the controlling executive is 

time-driven, it will return a time equal to the current time plus At, where At equals one 

clock tick. 

In the second case, the target subsystem's execution mode is time-driven, and the 

source subsystem is either event-driven or is under the control of a different time-driven 

executive. In this scenario, there needs to be two import objects associated with each of 

the target primitive's inputs:  one labelled old and the other labelled new.   In addition, 

the data structure of these import objects needs to include a new field representing time. 

When a transmit event is serviced in the source subsystem's executive, the new data will be 

written to the target primitive's new import object and will be stamped with the current 

time of the source executive.   When the target executive (time-driven) receives control 

from the time manager and one of its primitives updates, it must compare its current time 

to the time of the associated new import object. If the current time is less than the time 

of the new data, then it will use the old data (the new data should not yet be visible to 
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this primitive). If the current time is equal to or greater than the new data, then use the 

new data and copy the new import object to the old import object. 

5.3    Composable Executives 

In the current implementation, the event-driven and time-driven application execu- 

tives are instantiated textually and saved to a file. Each time a new application is composed 

requiring one of these execution modes, the associated file representing the appropriate ex- 

ecution mode is parsed into the application, and then the application specialist composes 

the new application. There was no way to use AVSI to compose application executives. 

Previous research (32) recommended the visualization of the application executive as an 

area of further research. In addition, as Architect evolves, the need for composable execu- 

tives will surely become a necessity. Even though the technology base for the application 

executive currently contains only five primitives, any real system developed using this tech- 

nology would require more specialized primitives. For example, in the time-driven domain, 

different applications would need different clock resolutions. There could be numerous 

time-driven clock primitives, and the application composer would select the appropriate 

one during the composition of the executive subsystem. 

In a previous research effort, Warner (30) developed a methodology for populating 

Architect's knowledge base. This methodology provided a systematic way in which to 

incorporate composable executives into Architect. In addition, since the event-driven and 

time-driven executives had already been instantiated textually, many of the required steps 

presented in Warner's methodology had already been accomplished. 
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5.3.1 Visualization of the Executive Primitives. At a high level, there are two 

steps required to instantiate a domain (populate and visualize the primitives) in Architect. 

The first step is to perform a domain analysis on the domain, and the second step is to 

implement the domain model developed in Step 1. As presented in Section 3.3, Welgan 

had already performed the domain analysis. The implementation of the domain model in 

Architect, according to Warner, is further broken down into the following six steps: 

1. declare the domain model classes 

2. define the attributes for the domain classes 

3. declare domain-specific types and functions 

4. define the domain specific language (DSL) 

5. define the visual specification objects (VSO) that are parsed in by the visual speci- 

fication language (VSL) 

6. declare the icon objects and draw the icons 

In the process of instantiating the executive domain primitives textually, the first four of 

these steps had already been accomplished, therefore, only the last two were required to 

visualize the executive primitives. 

The VSOs were defined in a file that, when parsed by the VSL grammar, instantiates 

the VSOs AVSI requires to manipulate domain primitives. In other words, the VSL is 

used to load the information necessary to visualize the domain. An example portion 

(representing the time-driven clock primitive) of the executive domain VSL specification 

is shown in Figure 5.3. The Icon section is the same for every primitive, except for the 

td-chck-bitmap-l and the td-clock-bitmap-s which are the specific names of the icon objects 
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for this primitive. The Edit section lists the attributes of the primitive that can be changed 

by the application composer. If an attribute of a primitive is not listed in this section, 

then it will not be listed when the application composer selects the menu choice that allows 

attribute values of a primitive to be changed. 

attributes for TD-CLOCK -Obj are 

Icon : 

label = class-and-name; 

clip-icon-label? = false; 

border-thickness = 0; 
bitmap4icon-l = td -clock -bitmap- l; 
bitmap4icon-s = td -clock -bitmap- ■s 

Edit : 

name : symbol; 

time : integer 

end; 

Figure 5.3    Time-Driven Clock Portion of the VSL Specification 

All that remained to visualize the executive domain's primitives was to declare the 

icon objects and draw the icons. Architect creates the icons it uses from bitmaps, which 

are pixel-by-pixel representations of graphics. The only information needed for these defi- 

nitions is the icon object names and the file names for the icon bitmaps. Figure 5.4 shows 

the associated icon object definitions created for the time-driven clock primitive. 

'/.'/. variables to hold th e icon's bitmaps (- 1 is 64x64, -s is 32x32) 

var td- -clock -bitmap-1 : any- -type .= (cw: :read -bitmap( 'EXECUTIVE-TECH-BASE/td- -clock icon- -1 ')) 
var td- -clock -bitmap-s : any- -type >=(cw: :read -bitmap( 'EXECUTIVE-TECH-BASE/td- -clock icon- -s ')) 

Figure 5.4    Time-Driven Clock Icon Object Definitions 

As stated above, icons in Architect are made from bitmaps, and every icon has a large (-1) 

and a small (-s) form. The large form is a 64x64 bitmap and the small form is a 32x32 

bitmap, and they were created using the Open Windows™ IconEdit tool.   Figure 5.5 
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shows the technology base window for the executive domain and the associated icons that 

were developed. 

Technology Base Window for EXECUTIVE 

CD 

Conn-Mgr 
CONNECTION-MGR-OBJ 

EVENT-DRIVEN-CLOCK-OBJ 

© 
TD-CLOCK-OBJ 

ED Ev Mgr 
ED-SEQ-MGR-OBJ 

TD Ev Mgr 
TD-SEQ-MGR-OBJ 

Figure 5.5    Visualization of the Executive Domain Primitives 

5.3.2 Concept of Operation. Once the executive primitives were visualized, it was 

necessary to define a concept of operations for applications with composable executives. 

The subsequent narrative defines the steps to be followed during the composition of an 

application with composable executives. 

The application specialist first selects the domain in which to compose the applica- 

tion. Once the domain is selected, Architect provides a menu, prompting the composer to 
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select a saved executive or create a new one. If he/she chooses to use a saved executive, 

a menu listing the saved executives for the execution mode of the selected domain will be 

displayed by AVSI, and the composer selects an executive from this list. Once a selection is 

made, the associated executive will be parsed in and displayed in the System Composition 

Window. Next, the Technology Base Window for the selected application domain will be 

displayed, and the composition process will continue as currently implemented. 

If the application specialist chooses to create a new executive, the Technology Base 

Window will first display the executive primitives, and the composer will assemble the 

executive subsystem in the same manner that application subsystems are created. When 

finished with the executive, the composer needs to inform AVSI to display the applica- 

tion domain primitives in the Technology Base Window. This is done by clicking on the 

Technology Base Window and selecting "Display Application Domain Primitives" from 

the resulting menu. Once the associated application domain primitives are displayed, the 

composition process will continue as currently implemented. In addition, the capability 

to modify an existing executive is needed; therefore, the menu displayed as a result of 

clicking on the Technology Base Window will also provide an option to "Display Execu- 

tive Primitives". This gives the application specialist the flexibility to alternate between 

the executive subsystem and the application subsystems during the composition of an 

application. 

Figure 5.6 shows the System Composition Window visualizing a simple application 

from the event-driven circuits domain. 
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Figure 5.6    Visualization of the Executive in a Simple Application 

5.3.3 Implementation. To complete the integration of the application executive 

with the composition kernel, all the remaining changes necessary to implement the con- 

cept of operation as defined in Section 5.3.2 consist of modifications to AVSI code. One 

additional implementation issue concerns the saving of an application executive subsys- 

tem. Currently, an application is saved by transforming the Refine™ abstract syntax 

tree (AST), rooted at the application object, into a file written in a domain specific lan- 

guage (DSL). In order to save an application executive subsystem, the AST rooted at the 

executive subsystem needs to be saved to a file, not the AST for the entire application. 

5.4    Summary 

This chapter developed two extensions to the current implementation of the Architect 

system. First, it discussed the incorporation of mixed-mode execution. An object model 
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was developed showing how the new implementation differs from the current implementa- 

tion, in particular, the addition of a time manager subsystem and the existence of multiple 

executives within an application. Following the specification of the object model, a concept 

of operation was developed that addressed two major areas of interest: time management 

and data consistency. Next, the incorporation of visually composable executive subsystems 

was presented. Warner's methodology for populating Architect's knowledge base (30) was 

used to aid in visualizing the executive primitives. Finally, Chapter VI provides the con- 

clusions of this research effort and recommended areas for further research. 
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VI.   Conclusion and Recommendations 

6.1 Overview 

This chapter provides a summary of the accomplishments of this research effort. It 

begins with a review of the original goals and then compares them to the final results. It 

also presents several recommendations for further research and discusses conclusions that 

can be drawn from this work. 

6.2 Research Goals 

The original goals of this thesis, as defined in Chapter I, were as follows: 

1. To develop an indepth understanding of the current implementation of the application 

executive. 

2. To consolidate the information detailing the implementation of the application exec- 

utive into a single, comprehensive document. 

3. To perform a critical evaluation of the application executive, analyzing the overall 

operational concept and the domain model for the event-driven and time-driven 

sequential operating modes. 

4. To analyze Architect to determine changes required for independent subsystems to 

execute in different modes. 

5. To complete the integration of the application executive with the composition kernel 

and integrate the application executive with AVSI. 
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6.3    Results 

This research was successful in achieving its objectives. Chapter III provides a thor- 

ough description of the current implementation of Architect's simulation environment. In- 

formation disseminated throughout several thesis reports and Architect's source code was 

combined into a single, comprehensible document, enhancing the overall understandability 

of the system. Next, a critical evaluation identified areas in which the current implemen- 

tation could be modified to improve Architect's execution capabilities. In particular, three 

major modifications were identified: 

1. Provide a standardized method in which to exchange data between subsystems and 

restrict subsystems' visibility by incorporating connection objects between all import 

and export objects. 

2. Re-establish conformity with the OCU model by enabling all subsystems to have 

import and export areas. 

3. Modify event flow so that events can be passed directly to/from the consuming/producing 

subsystem. 

In addition to identifying areas requiring modification, implementation details were de- 

veloped for each. Once implemented, the modifications will reduce the complexity and 

execution time of applications composed in Architect. Next, an object model and con- 

cept of operations were developed to illustrate how Architect could be modified to support 

mixed-mode execution. The concept of operations addressed the important issues of time 

management and data consistency. Finally, this research visualized the application execu- 
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tive primitives and presented a concept of operations for completing the integration of the 

application executive with AVSI. 

6.4    Recommendations for Future Research 

• Implement Critical Evaluation Solutions. As mentioned in the previous section, the 

critical evaluation identified three modifications that would improve the execution 

capabilities of Architect. This thesis effort was primarily an analysis of the current 

implementation, therefore, further research should carry the analysis one step further 

and implement the modifications of connection objects, import/export areas, and 

event flow. The actual implementation should be rather straight forward since this 

thesis provided implementation details as well as a solution to each of these. 

• Implement Mixed-Mode Execution. This research developed the groundwork on which 

to implement mixed-mode execution. The object model and concept of operations 

illustrated the feasibility of mixed-mode execution and offer a foundation on which 

to extend Architect to include this capability. 

• Complete Integration of the Executive with AVSI. The integration of the application 

executive with AVSI is nearly complete. The technology base for application execu- 

tive primitives has been visualized, and all that remains to complete the integration 

of the executive with the composition kernel is to modify AVSI code to implement 

the concept of operation as presented in Section 5.3.2. 

• Concurrent Simulation. The event-driven sequential and time-driven sequential sim- 

ulation capabilities within Architect allow for only a single thread of control within 
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an application. This needs to be extended to include event-driven concurrent and 

time-driven concurrent modes of execution. A decision would have to be made as to 

what level of concurrency would be allowed. The level of concurrency must address 

whether or not only top-level independent subsystems could execute concurrently 

or whether subsystems subordinate to the top-level subsystems would be allowed to 

execute concurrently. 

6.5    Conclusions 

This thesis effort significantly improved the documentation of the simulation envi- 

ronment of Architect. In addition to providing a more understandable description, the 

documentation removed any inconsistencies between the thesis reports from which it was 

derived. The critical analysis identified problem areas with the current implementation 

and presented solutions to these problems. Once implemented, the solutions will enhance 

Architect's execution capabilities by reducing complexity and application execution time. 

The development of an object model and concept of operation for mixed-mode execution 

provide the groundwork upon which to extend Architect's simulation capabilities. Finally, 

the integration of the application executive with AVSI is nearly complete. The executive 

primitives were visualized, and a concept of operation was provided to define how appli- 

cations with composable executives would be implemented. All that remains is to modify 

AVSI code to implement the concept of operation. 
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